Gamma-X Ray Coincidence Mössbauer Study with FeSO₄·7H₂O(⁵⁷Co)

NOTES

Takayuki Kobayashi Department of Physics, Shiga University of Medical Science, Otsu, Shiga 520-21 (Received May 24, 1988)

Synopsis. The anomalous charge states formed after the EC decay of 57 Co in FeSO₄· 7 H₂O doped with 57 Co are investigated in detail using the gamma-X ray coincidence Mössbauer spectroscopy. The mechanism to form these states is explained in terms of the H₂O and SO₄²⁻ coordination shells around the decaying atom.

Anomalous states formed after a nuclear decay in insulating materials (aftereffects) have been usually investigated using the emission Mössbauer spectroscopy. 1-4) In hydrated divalent metallic compounds doped with ⁵⁷Co, anomalous Fe³⁺ states are usually formed and are considered to be due to the oxidation of Fe²⁺ by free OH radicals produced through radiolysis of the H₂O ligands.⁵⁾ This mechanism was examined in detail with cobalt chloride hydrates using the gamma-X ray coincidence Mössbauer spectroscopy, 6) and a determinant role of the nearest and the next nearest H₂O coordination shells according to the densities of H₂O molecules was noticed. In the recent study with metallic sulfate hydrates,7) the influence of both H₂O and SO₄²⁻ ligands to the aftereffects has been suggested, but its detailed mechanism remains unknown. In the present work, a further investigation of the aftereffects in FeSO₄·7H₂O is therefore given using the gamma-X ray coincidence Mössbauer spectroscopy.

The principle of the experiment is based on the fact that the influence of low-energy electrons emitted during the Auger cascade after the EC decay of ⁵⁷Co on the surroundings of the decaying atom in the K-Auger process is approximately two times larger than that in the case of the K-X ray emission. A Mössbauer spectrum observed by using the coincidence technique only when K-X rays are emitted is, therefore, expected to give new information for the mechanism of the aftereffects on careful comparison with a conventional emission Mössbauer spectrum. More detailed explanations of the principle are described elsewhere.^{6,8,9)}

A sample of FeSO₄ · 7H₂O doped with ⁵⁷Co was prepared at room temperature from a very small amount of 0.25 mol·dm⁻³ H₂SO₄ solution of iron(II) sulfate including few μ Ci of ⁵⁷Co. The detectors used for 6.5 keV X-rays and 14.4 keV γ -rays were NaI(Tl) crystals

with 1-inch diameter and 1-mm thickness. The coincidence spectrum was recorded by the conventional slow coincidence technique. The other experimental details including the block diagram of the measuring system has been given in our previous paper. ⁶⁾

The Mössbauer spectra observed and parameters obtained are shown in Fig. 1 and Table 1, respectively. The normal state in FeSO₄·7H₂O is represented by Fe²⁺(1) in Table 1, and the others are anomalous states. Figure 2 shows graphically the relative intensities of the components. The reason why the intensity of Fe²⁺(1) in the coincidence spectrum is large compared with that in the conventional spectrum can be explained obviously from the experimental principle.

The densities of the H₂O and SO₄²⁻ molecules in FeSO₄·7H₂O as a function of distance from the iron atom to the oxygen atom is shown in Fig. 3, which were calculated by considering the structure of the compound.¹⁰⁾ Two distinct coordination shells of H₂O and SO₄²⁻ are noticed at approximately 2 Å and 4 Å, respectively, from the iron atom. The component Fe³⁺ is considered to arise from a free OH radical pro-

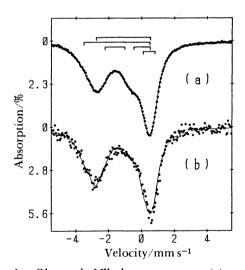


Fig. 1. Observed Mössbauer spectra; (a) conventional, (b) coincidence. The bar diagram represents the individual component peaks.

Table 1. Obtained Mössbauer Parameters of the Conventional and Coincidence Spectra

State	I.S.a)	Q.S.	[Conventional]		[Coincidence]	
			Width	Intensity	Width	Intensity
	mm s ⁻¹	mm s ⁻¹	mm s ⁻¹	%	mm s ⁻¹	%
Fe ²⁺ (1)	-1.15±0.01	3.31±0.03	1.01±0.03	32.9	1.10±0.08	51.7
$Fe^{2+(2)}$	-1.52 ± 0.04	3.97 ± 0.06	1.24 ± 0.06	18.4	1.22 ± 0.15	23.7
$Fe^{2+(3)}$	-1.64 ± 0.01	1.22 ± 0.03	1.09 ± 0.02	19.7	0.87 ± 0.16	9.5
Fe ³ +	-0.02 ± 0.03	0.99 ± 0.06	0.72 ± 0.02	14.9	0.62 ± 0.10	4.0
Fe*	0.43 ± 0.02	0.69 ± 0.02	0.72 ± 0.02	14.1	0.62 ± 0.10	11.1

a) Relative to α -iron at room temperature.

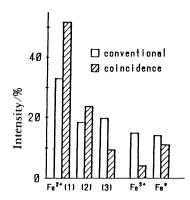


Fig. 2. Relative intensities of the component peaks in the spectra.

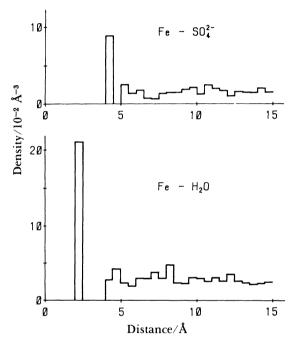


Fig. 3. Densities of H₂O or SO₄²⁻ molecules as a function of distance from a Fe atom in FeSO₄·7H₂O.

duced through radiolysis of a H_2O ligand in the shell being nearest to the decaying atom, because its intensity in the coincidence spectrum is much smaller than that in the conventional spectrum. The species of Fe* having the unusual value of its isomer shift (I.S.) is unknown, but is probably a high-charged state.

The formation of the $Fe^{2+}(2)$ state can be attributed

to the effect of radiolysis of SO₄²⁻ lingands. Owing to a relatively long distance between the decaying atom and a SO₃⁻ radical produced through radiolysis of a SO₄²⁻ ligand, this radical can hardly oxidize the iron ion which is produced after the decay of ⁵⁷Co. When this radical recombines with O-, which is also produced through radiolysis, or remains in its state for a while, the local symmetry around the iron ion becomes lower and this results in a large Q.S. value. It is not easy to show the mechanism of the formation of the Fe²⁺(3) state, which has a smaller Q.S. value than the other divalent states and a similar I.S. value to the Fe²⁺(2) component. As in the case of CoCl₂·2H₂O, where an equivalent component appears,6) the ligands being further than those in the two H₂O and SO₄²shells may be involved in the formation of the $Fe^{2+}(3)$ state. The decreased Fe²⁺(3) intensity in the coincidence spectrum in comparison with that in the conventional spectrum supports this explanation. Owing to the reduction of the flux of low-energy electrons under the coincidence conditions, the number of electrons passing through the H₂O and SO₄²⁻ shells then decreases, which results in a low intensity of the component. The cause of the small Q.S. value of $Fe^{2+}(3)$ compared with that of the other divalent components is unknown.

The results obtained in the present work matches collectively with those of $CoCl_2 \cdot nH_2O$ (n=2,6).

Miss Kazuko Fukumura should be acknowledged for her cooperation in preparing the sample material and in measuring the spectra.

References

- 1) R. Ingalls, G. J. Coston, G. de Pasquali, H. G. Drickamer, and J. J. Pinajian, J. Chem. Phys., 45, 1057 (1966).
- 2) J. M. Friedt, G. K. Shenoy, G. Absteiter, and R. Poinsot, J. Chem. Phys., 59, 3831 (1973).
- 3) Y. Sakai, K. Endo, and H. Sano, Bull. Chem. Soc. Jpn., 54, 3587 (1981).
- 4) D. L. Nagy, R. Doerfler, G. Ritter, J. Waigel, N. Zeman, and B. Molnár, *Phys. Lett.*, **95A**, 400 (1983).
- 5) J. M. Friedt and J. Danon, At. Energy Rev., 18, 893 (1981).
- 6) T. Kobayashi and J. M. Friedt, *Bull. Chem. Soc. Jpn.*, **59**, 631 (1986).
 - 7) T. Kobayashi, Radiochim. Acta, 42, 139 (1987).
- 8) T. Kobayashi, K. Fukumura and T. Kitahara, Nucl. Instrum. Methods, 166, 257 (1979).
 - 9) T. Kobayashi, Radiochim. Acta, 35, 43 (1984).
- 10) W. H. Baur, Acta Crystallogr., 17, 1167 (1964).